Unitary Systems, Wavelet Sets, and Operator-Theoretic Interpolation of Wavelets and Frames

نویسنده

  • David R. Larson
چکیده

A wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a collection, or system, of unitary operators. We will describe the operator-interpolation approach to wavelet theory using the local commutant of a system. This is really an abstract application of the theory of operator algebras to wavelet theory. The concrete applications of this method include results obtained using specially constructed families of wavelet sets. A frame is a sequence of vectors in a Hilbert space which is a compression of a basis for a larger space. This is not the usual definition in the frame literature, but it is easily equivalent to the usual definition. Because of this compression relationship between frames and bases, the unitary system approach to wavelets (and more generally: wandering vectors) is perfectly adaptable to frame theory. The use of the local commutant is along the same lines as in the wavelet theory. Finally, we discuss constructions of frames with special properties using targeted decompositions of positive operators, and related problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary systems and wavelet sets

A wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. We will describe an operator-interpolation approach to wavelet theory using the local commutant of a unitary system. This is an application of the theory of operator algebras to wavelet theory. The ...

متن کامل

ar X iv : m at h / 06 04 61 9 v 1 [ m at h . FA ] 2 8 A pr 2 00 6 Unitary systems and wavelet sets

A wavelet is a special case of a vector in a separable Hilbert space that generates a basis under the action of a system of unitary operators defined in terms of translation and dilation operations. We will describe an operator-interpolation approach to wavelet theory using the local commutant of a unitary system. This is an application of the theory of operator algebras to wavelet theory. The ...

متن کامل

Wavelets and Their Associated Operators

This article is devoted to the study of wavelets based on the theory of shift-invariant spaces. It consists of two, essentially disjoint, parts. In the rst part, the berization of the analysis operator of a shift-invariant system is discussed. That berization applies to wavelet systems via the notion of quasi-wavelet systems, and leads to the theory of wavelet frames. Highlights in this theory ...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

Interpolation Maps and Congruence Domains for Wavelet Sets

It is proven that if an interpolation map between two wavelet sets preserves the union of the sets, then the pair must be an interpolation pair. We also construct an example of a pair of wavelet sets for which the congruence domains of the associated interpolation map and its inverse are equal, and yet the pair is not an interpolation pair. The first result solves affirmatively a problem that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005